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MATHEMATICAL MODEL OF THE FAILURE OF TALL PRISMATIC ROCK SAMPLES WITH

A HIGH INTERNAL FRICTION ANGLE

Vasyliev L., Vasyliev D., Krasovskyi l., Rizo Z., Kress D.
M.S. Poliakov Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine

Abstract. The mechanical properties of rocks are among the most critical factors determining their resistance to
failure, particularly significant in the context of the mining industry and underground operations. Traditionally, such tests
have been regulated by state standards (GOSTSs) involving the crushing of samples with regular geometries, such as
cubes, prisms, and cylinders. The primary objective of these standards is to determine the compressive strength limit, a
key indicator for assessing material stability under load.

Tests are conducted on specimens with heights slightly exceeding their cross-sectional dimensions, enabling a
more accurate simulation of rock behavior under real geological conditions. A major parameter for analyzing the stress-
strain state of rocks is the strength limit and residual strength, evaluated through "stress-strain" diagrams obtained dur-
ing sample failure.

Such characteristics are typically determined using specialized presses available in major research centers like the
Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine and the Kryvyi Rih National Tech-
nical University. However, this equipment demands skilled personnel, regular maintenance, and is often distant from
mining sites, creating challenges in obtaining timely information about rock strength - an essential factor for mining safety.

This article introduces a new analytical method for calculating the strength and residual strength of rocks, based on
more accessible and straightforward tests. This method facilitates the determination of four key parameters: shear
strength limit, coefficients of internal and contact friction, and the material’s elastic modulus.

The proposed approach not only simplifies the evaluation of strength characteristics but also provides a more accu-
rate description of failure processes in taller samples, which is crucial for engineering calculations and the design of
mining structures. Research findings indicate that increasing the sample height significantly reduces its strength; for
instance, doubling the height can decrease the ultimate strength by up to 30%.

Consequently, the proposed analytical method enhances the ability to obtain rock strength data directly in the field,
enabling swift stability assessments and reducing the risk of accidents. This contributes to improving efficiency and safe-
ty in mining operations through more precise predictions of rock behavior under load. The method is valuable for both
research and practical applications, offering engineers and designers a tool for more detailed analysis of rock strength
characteristics.

Keywords: rock, strength limit, failure, crack, stress-strain diagram.

1. Introduction

The mechanical properties of rocks play a key role in ensuring the stability of
structures and the efficiency of mining operations. Testing samples to determine the
material's strength limit is regulated by national standards in many countries. These
tests often rely on compressing samples of regular geometric shapes, such as cubes,
prisms, or cylinders. European standards, for example, recommend a height-to-
diameter or height-to-length ratio of two for the samples to minimize the impact of
contact friction.

Given Ukraine's integration into the European Union, there is a growing need to
adapt existing standards to European requirements. However, the effect of sample
geometric parameters on reducing contact friction and, consequently, on the accuracy
of strength limit determination remains underexplored.

Existing literature offers various approaches to modeling rock failure processes.
For instance, studies [1-4] analyze the failure mechanisms of tall prismatic samples
considering the internal friction angle. Works [5—8] explore modern methods for
modeling the stress-strain state of rocks, including the use of discrete fracture net-
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work models. Furthermore, classic studies [9—10] provide a theoretical foundation for
understanding the mechanical properties of rocks.

The objective of this study is to investigate the influence of sample geometry on
the strength limit and to develop an analytical method that accounts for these parame-
ters. A comparative analysis of data is also conducted for samples of regular geome-
try and tall samples using methods proposed in the literature [1-10].

2. Methods

The authors of the article, based on the theory of slip lines in solid body defor-
mation mechanics, have developed several analytical methods for calculating strength
limits and the parameters of "stress-strain" diagrams for prismatic samples with a
high degree of convergence with experimental data. These methods are applied to
some of the known failure modes under uniaxial compression according to L.I. Baron
— truncated wedge, longitudinal, wedge, and diagonal forms — using an exponential
distribution of contact normal stresses according to E.P. Unksov. One of the condi-
tions for the formation of rock sample failure modes is the intersection of one of the
slip lines with the vertical symmetry line of the sample, resulting in a wedge-shaped
form. It is clear that as the height of the sample increases, the probability of trans-
forming truncated-wedge and longitudinal forms into wedge or diagonal forms in-
creases. As experts understand, the strength limit of rocks without contact friction is
precise. However, when testing samples under compression, there is no way to elimi-
nate contact friction between the sample and the plates. Experimenters have noticed
that as the sample height increases, its strength decreases. However, it is unclear how
much this decrease brings the experimenter closer to the true strength. Therefore, we
have set the goal of developing an analytical method for calculating the strength lim-
its of tall samples and comparing them with methods for calculating samples of regu-
lar geometry, i.e., when their height equals the length (or width).

To describe the rock failure process, the Coulomb criterion for maximum effec-
tive shear stresses on slip lines and on slip surfaces (SS), in our opinion, is more ap-
propriate. The Coulomb criterion [4] for cohesive media is based on the assumption
that the rock's resistance to shear 7 on a given slip surface is equal to the sum of the
resistance to pure shear (shear strength limit) and a term proportional to the normal
stress ¢ on that surface (compression is considered positive). Upon failure of the
sample on the SS, a crack forms. As the crack develops, part of the material is re-
lieved of load. Given the plane strain model, the bearing portion of the material at any
moment can be determined from the coordinates of the tip of one or two cracks,
which corresponds to the original area of the sample minus the part that has been re-
lieved of load as the crack develops along the SS. The relieved portion of the sample
is determined by the abscissa values of the crack tip as x = yctga , where y — ordinate

of the axis OY, a — the angle of inclination of the left slip surface (SS) at the crack tip
relative to the x-axis (abscissa axis).

As the conceptual basis for developing the method of calculating the strength of
tall samples, we use the method of calculating basing on practical researches pris-
matic samples of regular geometry [1, 4]. In Figure 1, we depict the sample. A verti-
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cal load acts on the sample, along with contact shear stresses arising from contact
friction, which are directed inward, opposing transverse deformation. The coordinate
axes are placed in the top-left corner of the sample. On the upper surface of the left
longitudinal half of the sample, the contact shear z. stresses are positive, while on the
lower surface, they are negative. On the right half, the signs of the stresses are oppo-
site. It is important to note that due to the vertical load, the sample acquires a convex
shape. Therefore, the rule of parity for shear stresses is applicable at the corners of
the sample. The derivation of the formulas for determining the parameters of the
sample's failure is presented in [3-8].

Oy, Tﬂmﬂﬂm

a —_— ——

Y

Figure 1 — Diagram of the formation of an exponential profile of contact normal stresses
and the development of two cracks along SL (slip line)
under the distribution according to formula (2)

The angle of inclination of the slip line ¢ relative to the horizontal is determined
by the formula:

T p
==+ 5., 1
Ge =7+ P (D)

where p — angle of internal friction, rad; f: — angle of rotation of the left slip line from
contact friction, rad.

The well-known formulas for calculating the normal compressive stress o, along
the length of the sample and the specific contact pressure according to E. N. Unksov
[4] were used.

2f.-x
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where Gy~ normal tension at angular point, Pa; f. — contact friction coefficient; a;

and /; — specimen length and height, m.
Vertical normal tension on left SL & is determined by the formula

k, (1 + sin p l—bg)-exp@y(&z +,8b))

1
H l—sinp\/l—bg

O-yf =

—ky |, (4)

where k, — material shear resistance, Pa; u= tgp — internal friction coefficient;

(kn +uo, )(l—sinp l—bgj

ky, =
(1 +sin p4/1— bg)exp(4,uﬂc)

)

k;, — shear resistance of a material by SL & on the side of the lower contact plane, Pa.

Taking into account the exponential regularity of normal stresses according to
E.P. Unksov [4], where b: and by:

2 2fcx
Ao of
be = 1 S L2, (6)
k,+poy,, -exp Je g
hl

by =—

where x: — current value of the crack apex abscissa by SL &, m; x;— abscissa of the
intersection point of SL ¢ with the lower surface of the specimens, m.

But it should be emphasized here that since the edge of the sample is out of
load, the stress o,¢ at the top of the crack for the left SL ¢ plays the role of tension g,
— vertical normal stress at the angular point. Therefore, in formulas (5-7) it is neces-
sary to use oy,: = g,9. Note that the stress values o, with increasing ordinate y: in-
crease. Using bz and b, to calculate normal stress o, important parameters are deter-
mined g, rad and g, rad:
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From here, we provide a description of the left SL &. The rotation angle S5 on
the lower (supporting) contact surface will have a negative sign, and for each condi-
tion ¢, it will be constant. On the lower surface, the equality k,=k, holds when the
crack reaches the lower surface; in the rest of the sample area on the left SL ¢, the
inequality k,<k, is satisfied. After this, it becomes possible to determine the value of
the normal stress 0,9 = 0, on SL &, using a system of equations.

With the development of two symmetrical cracks along SL & (Fig. 1), the formula
for the specific force will take the form:

’ 2f, -tj
2|lo exp( € |dt
p= ‘([ - i =c h exp —C-(a —2x ) -1 (10)
(al—Zxéc) ¢ fcia1—2x§i hy : : ’

a
where ;:71_);; o

Ve normal stress at the crack apex; x:— current value of the

crack apex abscissa by ¢.
Using the presented formulas, we obtain a set of theoretical curves in the form of

"normal stress — longitudinal strain" diagrams, which can be compared for reliability
with experimental data [4] (Fig. 2).
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Figure 2 — Stress-longitudinal strain diagrams
with a truncated wedge form of destruction of high specimens
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The authors of [4] do not provide the necessary physical and mechanical charac-
teristics, such as the material's shear resistance and the coefficients of external and
internal friction. These can be approximately determined based on the appearance of
the ultimate curves, allowing for a very close match between the calculated and ex-
perimental strength limits. For instance, experimental diagram 1 is described by cal-
culated diagram 2 when: k, =60 MPa, u = 1.0, /. = 0.02, E = 5.1-10* MPa, experi-
mental diagram 3 — calculation diagram 4 at k, = 69 MPa, p=1.0, f. =0.02,
E=5.8-10°MPa; experimental diagram 5 — calculation diagram 6 at k, = 59 MPa,
u=1,1=0.02,E=5910° MPa.

The comparison of calculated diagrams with experimental diagrams obtained un-
der uniaxial compression convincingly demonstrates the high effectiveness of the
proposed method for calculating the strength limit and constructing ultimate failure
curves for rocks.

In general, it should be noted that the highest agreement with experimental data is
observed for the exponential distribution of shear stresses when the stabilization of
the contact friction coefficient fc is within the range of 0.2 to 0.35. From the analysis,
an important conclusion emerges: the exponential distribution of contact shear stress-
es ensures satisfactory reliability of the calculated strength limit results when com-
pared with experimental data for fc values within the range of 0.2 to 0.35.

When f. exceeds 0.35-0.4 and p exceeds 40°, a longitudinal failure shape is
formed instead of a truncated-wedge shape. This longitudinal failure shape will be
described in a subsequent article. The criterion for the formation of the truncated-
wedge shape is the alignment of SL & and & with the corresponding half of the sam-
ple.

Next, let us consider the calculation of tall samples. For example, we take a pris-
matic sample with the following rock material properties: k,=10 MPa, u=1, £=0.25,
E=5.9-10* MPa.

Using these values in the calculation, we obtain a truncated-wedge failure shape
for the sample, as shown in Fig. 1. Let us take a tall sample with a height ~=1.15-a,,
at which point SL ¢ reaches the vertical line of symmetry (Fig. 3), resulting in no re-
sidual strength.

Y

Figure 3 — Stress state diagram of a tall specimen in the absence of residual strength
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The comparison of calculated diagrams with experimental diagrams obtained un-
der uniaxial compression convincingly demonstrates the high effectiveness of the
proposed method for calculating the strength limit and constructing ultimate failure
curves for rocks.

In general, it should be noted that the highest agreement with experimental data 1s
observed for the exponential distribution of shear stresses when the stabilization of
the contact friction coefficient /. is within the range of 0.2 to 0.35. From the analysis,
an important conclusion emerges: the exponential distribution of contact shear stress-
es ensures satisfactory reliability of the calculated strength limit results when com-
pared with experimental data for f. values within the range of 0.2 to 0.35.

When f; exceeds 0.35-0.4 and p exceeds 40°, a longitudinal failure shape is
formed instead of a truncated-wedge shape. This longitudinal failure shape will be
described in a subsequent article. The criterion for the formation of the truncated-
wedge shape is the alignment of SL & and &, with the corresponding half of the sam-
ple.

Next, let us consider the calculation of tall samples. For example, we take a pris-
matic sample with the following rock material properties: k&, = 10 MPa, u = 1.0,
fe=0.25, E=5.9-10* MPa.

Using these values in the calculation, we obtain a truncated-wedge failure shape
for the sample, as shown in Fig. 1. Let us take a tall sample with a height # = 1, at
which point SL & reaches the vertical line of symmetry (Fig. 4), resulting in no resid-
ual strength

y=2r-L-p,. (1)

Y
Figure 4 — High specimen pre-fracture scheme /,=1.15-a;

Now, let's take a sample with a height, for example, equal to #; = 1.5-a; (Fig. 5).
Then the conditions of destruction change. The crack at point O intersects the vertical
line of symmetry. This indicates a change in the stress state, since on the vertical line
of symmetry the parameters b: and f: in formulas (4)—(6) and (8) are equal to zero.

The shape of the truncated-wedge sample self-organizes into a wedge shape, and
the parameters b: and f: act as the parameters of the so-called TMESS (Trajectory of
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Maximum Effective Shear Stresses) return #, with the mentioned parameters denoted
as bn and Bn. Strictly speaking, the destruction process progresses from bottom to
top. However, the slip lines ¢ and # are interchangeable. Therefore, the subsequent
description, this time not of the truncated-wedge shape but of the wedge shape, will
proceed from top to bottom. This approach is more illustrative (Fig. 5b).
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Figure 5 — Scheme of destruction of a high specimen in the form of a wedge shape of destruction

At h; = 1.5-a; a wedge-shaped failure form arises, with the starting point of the
failure on the contact surface located at a distance from the corner point equal to
xo=0.15-a; (Fig. 5). At h; = 1.65-a; the failure begins at one of the corner points of
the sample. As the height of the sample increases, the starting point of the failure
shifts to the lateral surface of the sample (Fig. 6). Thus, under the given physical and
mechanical properties: k, = 10 MPa, p = 45°, f.= 0.25 and with a change in the sam-
ple height within 4; = (1.15-1.65)-a,, the failure will occur in a wedge-shaped form,
and the starting points of the failure will be located on the end surface at a distance
from the right point a".
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a) — at the time of pre-destruction; b) — at the time of the formation of the wedge side;
c¢) — at the time of wedge formation, d) — at the time of wedge form formation

Figure 6 — Diagram of the formation of a wedge shape of a high prismatic rock sample for its
compression at the beginning of fracture from the lateral surface
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At a specimen height equal to /#; = 2-a;, with the parameters of the physical and
mechanical properties of the material k&, = 10 MPa, u = 1.0, fc =0.25 The coordinates
of the point of origin of destruction are: xp=0; y =0.2.

3. Conclusions

1. A mathematical model for the failure of high prismatic rock samples has been
developed, utilizing four indicators (shear strength of the material, coefficients of in-
ternal and contact friction, and the modulus of elasticity) of rock properties, which
allows for revealing the physical characteristics of the failure of high samples.

2. A prismatic sample with the material properties of the rock: k, = 10 MPa,
u=1.0,f=0.25,E=5.9-10* MPa before h;=1.15-q, fails in the form of a truncated-
wedge shape. As the sample height increases, the failure surface intersects the verti-
cal symmetry line, and the failure occurs in a wedge-shaped form. When /; = 1.65-a,
Failure begins at one of the corner points of the sample. As the height of the sample
increases, the starting point of the failure shifts to the lateral surface of the sample.
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MATEMATMYHA MOLENb PYWHYBAHHS BUCOKUX MPU3MATUYHUX 3PA3KIB MPCbKUX MOPIA 3
BUCOKMUM 3HAYEHHAM KYTA BHYTPILLHbOIO TEPTA
Bacunbses J1., Bacunees [., Kpacoscbkuli 1., Pi3o 3., Kpecc .

AHoTauif. MexaHiyHi BNaCcTUBOCTI FipCbKMX MOPIG € OHWM i3 HaWBaXNMBILLMX (HAKTOPIB, WO BM3HAYAKTb IXHIO
CTINKICTb 0 PYIHYBaHHS, L0 0COBMMBO 3HAYYLLO B KOHTEKCTI ripHM40A00YBHOI NPOMUCIIOBOCTI Ta NPOBEAEHHS! FiPHUYMX
pobit. TpaguuinHo Taki BunpobyBaHHs pernamenTtyBanuca ACTY, ski nepegbavany CTUCKAHHA 3paskiB NpaBWIbHOI
reomeTpii, Taknx K Kybu, npuammn Ta uuniapu. OCHOBHOK METOK LMX CTaHAAPTIB € BU3HAYEHHSI MEXi MILHOCTI Ha
CTMCK, WO € KMKOYOBMM MOKA3HWKOM A151 OLiHKW CTINKOCTI MaTepiany nig BnfvMBOM HaBaHTaXeHb. BunpobyBaHHs npoBo-
OATbCA Ha 3paskax i3 BUCOTOH, HE3HAYHO BiNbLUOH 3a TXHi MonepeyHi po3MipK, Lo A03BONSE HANTOYHILE 3MOLENoBaTH
NoBeAiHKY NMOpoaM B yMOBAX pearibHUX ripCbKux MacuBiB.

OpfHvM i3 ronoBHUX NapameTpiB ANS aHanidy HanpyxeHo-AeOpMOBaHOro CTaHy rpCbKX Mopig € Mexa MiLHOCT
Ta 3aULLIKOBA MILHICTb, AKi OLIHIOKTLCS 3a diarpamamu «HanpyxeHHs—gedopmallis», OTpUMaHUMK MiJ Yac pyMHYBaHHS
3paskiB. Lli xapakTepucTukn 3a3Bnyai BUSHaYaOTbCA Ha CheljaniaoBaHux npecax, SOCTYMHUX fULLE Y BEMUKUX HayKo-
BMX i JOCMIAHULBKUX LieHTpax, Takux [k IHCTUTYT reoTexHiuHol MexaHiku HAH Ykpainu Ta KpuBopisbkui HaLioHanbHWI
TEXHIYHMI YHiBepcuTeT. OgHak Take obnagHaHHs BUMarae BMCOKOKBanichikoBaHOro nepcoHasy Ta perynspHoro obcny-
rOBYBaHHS, @ TAKOX PO3TallOBaHe Ha 3HaYHii BiACTaHi Bif ripHM4ogobyBHUX NignpuemcTs. Lie CTBOpIoe TpyaHOLi B
OTPUMaHHI OnepaTuBHOI iHpopmaLjii Mpo MiLHICTL Nopia, WO € 0cobNMBO BaxNMBMM ANs 3ab6e3neyeHHs 6e3nekn ripHK-
4nx poBiT.

Y it cTaTTi 3anponoHOBaHO HOBUIA aHanTUYHUI METOA PO3paxyHKy Mexi Ta 3anuLIKOBOI MILHOCTI ripcbkux nopig,
3aCHOBaHWIA Ha QOCTYMHIWMX i NpocTiwux BunpobyeaHHax. Llen nigxig 4o3sonsie oTpuMyBaTy JaHi 3@ YOTUPMa OCHOB-
HUMU NapaMeTpamu: Mexa MILHOCTI Ha 3CyB, KOe®iLiEHT BHYTPILIHBOrO Ta KOHTAKTHOMO TEPTS, @ TakoX MOAYIb Npyx-
HOCTi maTepiany. 3acTOCyBaHHS TAKOro METOAY He JMLLE CrpOLLYe MPOLEC OLIHKM MILHICHUX XapaKTepuCTHK, a N 403BO-
NSIE TOYHiLLE ONUCaTH MPOLECH PYMHYBAHHSA BUCOKWX 3paskiB, L0 Mae NpakTUYHE 3HAYEHHS ANS iHXKEHEepPHUX PO3paxyH-
KiB | MPOEKTYBAHHS FipHUYMX KOHCTPYKLiIA. BignoBigHo A0 pe3ynbTartiB JocnimkeHb, 3i 30iNbLEHHAM BUCOTM 3pa3ka foro
MILHICTb MOMITHO 3HWXKYETLCS: HANPUKIag, NPy NOABOEHHI BUCOTW rpaHNYHa MILHICTb MOXe 3MeHLwuTICS Ha 30%.

TakuM YMHOM, 3anPOMOHOBAHUI aHAMITUYHUIA METOA PO3LLMPHOE MOXMMBOCTI OTPUMAHHS AaHUX NPO MILHICTb ripCh-
kix mopig 6e3nocepeaHbo B NOMbOBMX YMOBaX, L0 A03BOIISE ONEPATUBHO OLIHIOBATM IXHIO CTIMKICTb | 3HXKYBATU PU3NK
aBapiHux cutyauin. Lle cnpusie nigsuileHHio edekTBHOCTI Ta 6e3nek ripHuumMx pobiT 3aBASKM TOYHILLIOMY MPOrHO3Y-
BaHHIO MOBEAIHKM MPCbKIX MOpig Nig HaBaHTaxeHHsM. HoBuin meTod Moxe ByTU KOPUCHUM SIK ANst AOCTAHNULBKMX, TaK i
ANS NpUKNagHuX Linei, Hagatoum iHxeHepam i NpoeKkTyBanbHUKaM IHCTPYMEHT AN TOYHILIOrO aHanisy MiLHICHWUX Xapak-
TEPUCTUMK NOpia.

KntouoBi cnoBa: ripcbka nopoga; Mexa MiLHOCTI; pyiHyBaHHS; TpiLLMHa; Aiarpama «HanpyxeHHs—gedopmaLlisy.
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	Figure 6 – Diagram of the formation of a wedge shape of a high prismatic rock sample for its compression at the beginning of fracture from the lateral surface

